Standard Indicator 1 - Mitigation

Estimating emission reductions from IKI project activites

Online Seminar 2 - AFOLU

Birgit Alber (ZUG, IKI SI Helpdesk), Florian Schmitt & Pedro Passaro (Perspectives Climate Group)

Virtual, 02.08.2023

Agenda

	1	Introduction						
	2	Common understanding of direct and indirect mitigation						
	3	Typical emission sources for emission reduction activities / measures in the AFOLU sector (incl. applicable methodologies)						
	4	Typical baseline and project scenario (incl. leakage)						
	5	Calculation of emission reductions (incl. example)						
	6	Relevant default values and reference source						
	7	Conclusion						
IK	IKI O INTERNATIONAL CLIMATE INITIATIVE							

1 Introduction

Introduction to the IKI Standard Indicators (SI)

- First introduced in 2015 and revised in 2022 •
- SI enable the IKI to aggregate headline results . across individual projects
- Data is used to communicate IKI's achievements to • the public, German parliament and other stakeholders and as part of national and international reporting

Selected IKI impacts, 2015–2021

CO2 equivalents directly mitigated

area of ecosystems improved or protected

8000000 t

CO2 equivalents directly mitigated

24 projects reported on this in the data for the Standard Indicator Action Mitigation.

19000000 ha area of ecosystems improved or protected

49 projects reported on this in the data on the Standard Indicators Action Ecosystems and "S2 - Ecosystems".

coast improved or protected

267 km coast improved or protected

5 projects reported on this in the data on the Standard Indicators Action Ecosystems and "S2 - Ecosystems".

people directly supported by the project to adapt to climate change or to conserve ecosystems

1000000

people directly supported by the project to adapt to climate change or to conserve ecosystems

70 projects reported on this in the data on the Standard Indicator Action People.

people directly supported

Source: https://www.international-climate-initiative.com/en/about-iki/impact-and-learning/

Overview of IKI Standard Indicators

SET A - Old SI

Action Mitigation

Action Ecosystems

Action People

SET B – SI as of 2022

SI 1 - Mitigation	GHG emissions reduced or carbon stocks enhanced directly or indirectly by IKI project measures.
SI 2 - Ecosystems	Area of ecosystems with improved conservation and sustainable use due to IKI project measures.
SI 3 - Adaptation	Number of people directly and indirectly supported by IKI projects to better adapt to climate change.
SI 4 - Capacity People	Number of people directly supported by IKI projects through networking and training to address climate change and/or to conserve biodiversity.
SI 5 – Leveraged Finance	Volume of private and/or public finance leveraged for climate change and biodiversity purposes in EUR.

Provisions for IKI projects in a nutshell

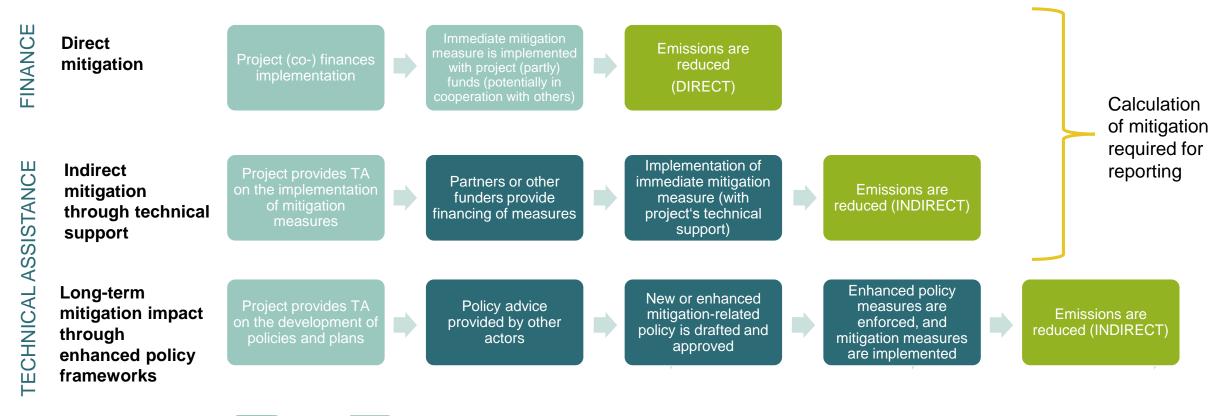
- Report **on new Standard Indicators (Set B),** if the project has submitted the first interim report in April 2022 or thereafter.
 - Older projects may be required to switch due to large amendment requests or can switch voluntarily
- Report **on all relevant Standard Indicators** (i.e. SI for which the project is producing results)
- Report in line with the respective Indicator Guidance Sheets in the IKI Project Planning and Monitoring Guidelines
- Report on new Standard Indicators (SET B) through the IKI Standard Indicator Report (Annex 7, Excel Tool)

Key guidance documents (click <u>here</u>)

- IKI Standard Indicator Report (Excel Tool)
- IKI Project Planning and Monitoring Guidelines (incl. Standard Indicator Guidance Sheets

Please note that slight updates where made to both documents in July 2023 to improve clarity and useability.

2 Common understanding of direct and indirect mitigation


IKI differentiates between direct and indirect GHG mitigation

Estimating mitigation required for reporting of direct financed and technical support leading to immediate mitigation

Direct GHG emission reduction / carbon stock enhancement (in tCO ₂ e)	reduced or avoided immediately through mitigation measures (partly) <i>financed by the IKI project or measures</i>	Estimating mitigation
Indirect GHG emission reduction / carbon stock enhancement (in tCO ₂ e)	reduced or avoided by means of <i>IKI-funded technical</i> <i>support</i> for mitigation measures financed by a party other than the IKI, but the IKI plays a critical role in providing essential technical implementation support	required for reporting
Long-term mitigation impact through enhanced policy frameworks	potential future / long-term emission reductions through enhanced policy frameworks	Reference to existing target only

Different pathways and causal chains of IKI projects

Direct financing, technical support and enhanced policy framework

Project

Other partners or actors

IKI O INTERNATIONAL CLIMATE INITIATIVE

Project activities lead to different impact and potential mitigation

Examples for the three categories of impact

Direct mitigation

- On-the-ground piloting or demonstration components of IKI projects
- Use of financial mechanisms
- Development and financing of an app
- Project activities resulting in lowercarbon intensity of services or products

Immediate GHG emission reductions

Indirect mitigation through technical support

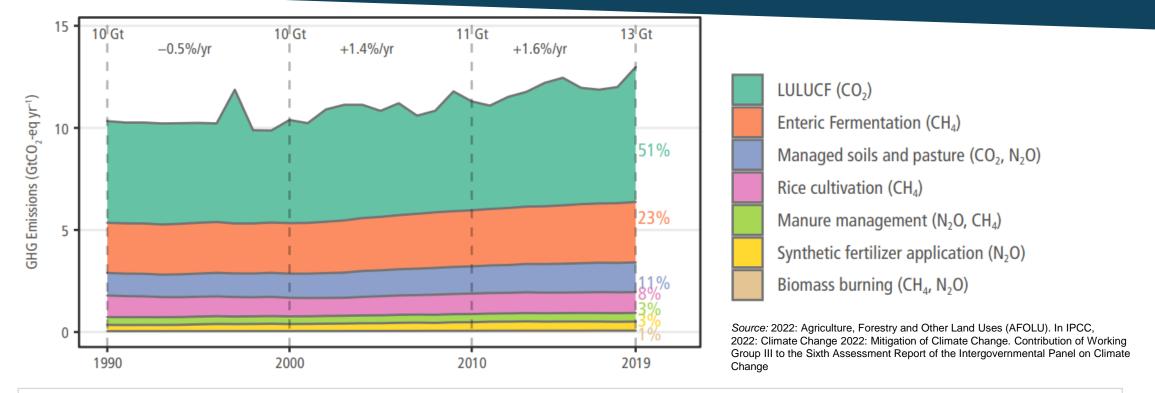
- Technical capacity development for the scaling of pilots
- Implementation of community forest management plans that translate into protected forest areas
- Improved land or marine management status
- Short-term removal of regulatory barriers

Short-term / upscale GHG emission reductions

Enhanced policy frameworks

- Technical support on the development/ revision of NDCs or LT-LEDS
- Development of sectoral policies / strategies
- Development of subnational netzero emissions action plans
- Roadmaps for policies

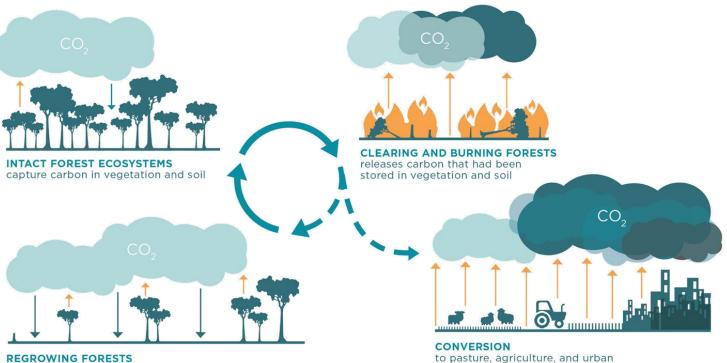
Long-term mitigation impact / potential for future GHG emission reductions



3 Typical emission sources and emission reduction activities

Global AFOLU-related CO₂ emissions trends since 1990

Key messages from <u>IPCC-Report</u>: ~21% of global total anthropogenic GHG emissions


• Mainly driven by land use change which accounts for about half of total net AFOLU emissions.

INTERNATIONAL CLIMATE

INITIATIVE

- GHG emissions from the AFOLU sector are rising due to growing demands, but there are large mitigation potentials
- Despite the challenges, the AFOLU sector offers unique opportunities for climate change mitigation.

AFOLU sector accounts for GHG sources, as well as sinks

REGROWING FORESTS capture and accumulate carbon slowly over decades

areas produces ongoing emissions

Source: CGDEV.org

GHG emission mitigation activities in the AFOLU sector

Examples of Emission Reduction

Reduce emissions from Agriculture

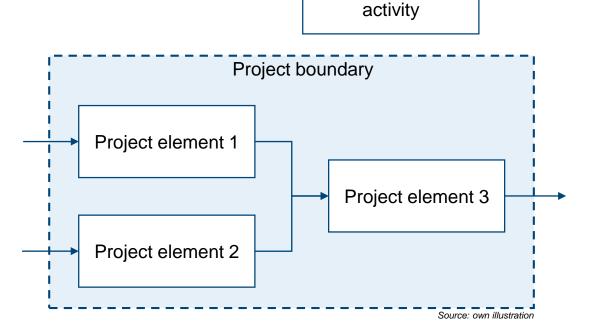
- Cropland nutrient management N₂O
- Reduced N₂O from manure on pasture
- Manure management N₂O and CH₄
- Improved rice cultivation CH₄
- Reduced enteric fermentation CH₄
- o Reduced synthetic fertilizer production
- Reduce emissions from Forests and other Ecosystems
 - o Reduce deforestation
 - o Reduce forest degradation
 - o Reduce conversion, draining, burning of peatlands
 - Reduce conversion of coastal wetlands (mangroves, seagrass and marshes)
 - o Reduce conversion of savannas and natural grasslands

Examples of Carbon Stock Enhancement

- Creation or improvement of carbon pools & reservoirs and their ability & capacity to sequester & store carbon
 - Afforestation/Reforestation (AR)
 - Forest management
 - o Agroforestry
 - o Peatland restoration
 - o Coastal wetland restoration
 - o Soil carbon sequestration in croplands
 - Soil carbon sequestration in grazing lands
 - o Biochar application

Emission target of the project activity serves as orientation for categorization

4 Typical baseline and project scenario (incl. leakage)


Project boundary

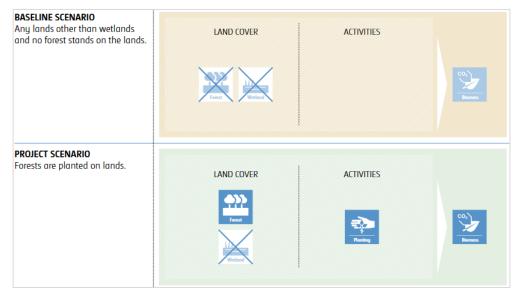
The project boundary

- Refers to the *defined scope* or geographical area within which emissions and emission reductions are accounted for
- Sets the limits for the emissions included in the assessment

For typical AFOLU-related projects

 The project boundary refers to the *limits or borders* of the designated project area. This area could encompass various types of land, such as a farm, a protected site, or a specific region within a larger area, such as a municipality or a park

Not project-related


Typical baseline and project scenario

Baseline scenario

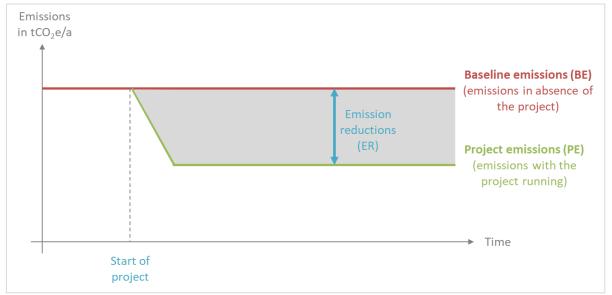
- reflects the emissions that would occur without the project
- represents the reference situation, e.g.,
 - the continuation of current activities (e.g. Business-as-Usual)
 - emissions from an activity that represents an economically attractive course of action
 - a benchmark approach (considering emissions from similar project activities undertaken in the previous five years in similar circumstances)

Project scenario

- represents the emissions associated with the (proposed) project's implementation
- reflects the expected outcomes of the project

Source: UNFCCC (2022): CDM Methodology Booklet, p. 280.

Calculation of emission reductions


General approach for mitigation activites considering baseline and project emissions

The achieved emissions reductions are typically calculated as the *difference between baseline emissions and emissions after project implementation*, considering any potential leakage.

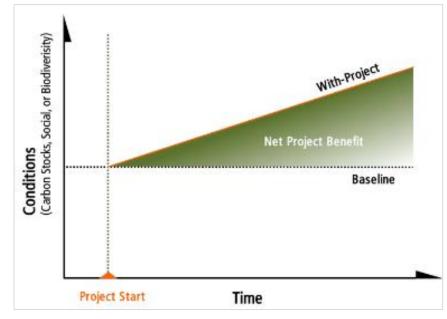
$$ER_y = BE_y - PE_y - LE_y$$

Where:

- $ER_v = Emissions reductions in year y (tCO_2)$
- $BE_v = Baseline emissions in year y (tCO_2)$
- $PE_v = Project \text{ emissions in year y } (tCO_2)$
- LE_{y} = Leakage emissions in year y (tCO₂)

Source: Mitigation Action Facility (2023): <u>Mitigation Action Facility</u> – <u>Mitigation Guideline for the Project Concept Phase</u>, p. 10

Calculation of carbon stock enhancement


General approach for mitigation activites considering baseline and project emissions

The carbon stock enhancements are typically calculated as the *difference between carbon stock after project implementation and the carbon stock without intervention*, considering any potential leakage.

$$CSE_y = PCS_y - BCS_y - LE_y$$

Where:

 $CSE_y = Carbon stock enhancement in year y (tCO_2)$ $PCS_y = Project carbon stock in year y (tCO_2)$ $BCS_y = Baseline carbon stock in year y (tCO_2)$ $LE_y = Leakage emissions in year y (tCO_2)$

Source: Johannes Ebeling, Jacob Olander - Forest Trends: <u>Building Forest</u> <u>Carbon Projects Step-by-Step Overview and Guide</u> p. 35

Consideration of leakage emissions

GHG emissions which occurs outside the project boundary attributable to the project activity

Carbon leakage

- The increase of GHG emissions which occurs outside the project boundary which is attributable to the project activity (cf. Glossary: CDM terms)
- Under GHG Protocol, leakage emissions are also referred to as "secondary effects"
- Attention: leakage is used in different meanings: e.g., "physical leakage" from bio-digester (i.e., a project emission source)

Examples of carbon leakage

- Biomass projects
 - Shift of pre-project activities (e.g., deforestation outside the land area where the biomass is grown)
 - Emissions from biomass generation / cultivation and transportation (outside project boundary)
 - Competing uses for the biomass

Accounting Principles

- Relevance
- Completeness
- Consistency
- Transparency
- Accuracy
- Conservativeness

Use conservative assumptions, values, and procedures when

uncertainty is high. Conservative values and assumptions are those that are more likely to overestimate GHG emissions and underestimate removals, rather than underestimate emissions and overestimate removals.

• Permanence

5 Calculation of emission reductions (incl. example)

Example – Agriculture – Rice irrigation management

Project: Adjustment of water management practices in rice cultivation

- Target group: farmers cultivating rice in flooded conditions
- **Objective:** reduce methane emissions from anaerobic decomposition of organic materials in flooded rice fields
- **Project intervention**: Support farmers to switch from continuously to intermittent flooded conditions.

Gold Standard methodology:

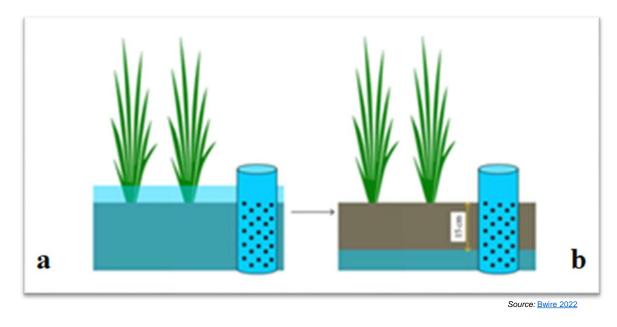
TERNATIONAL

<u>Methodology for methane emission reduction by adjusted water</u> <u>management practice in rice cultivation</u>

Source: CCAFS

Example – Baseline and project scenario

Project boundaries:


- Area: 100 ha.
- Single cropping period
- GHG emissions considered: CH₄, N₂O and CO₂

Baseline scenario

• 100 ha of fields flooded during the cultivation period (140 days / year).

Project scenario

• 100 ha are progressively shifting from continuously to intermittent flooded conditions (multiple drainage).

Calculation of emission reductions

General approach for mitigation activites considering baseline and project emissions

The achieved emissions reductions are typically calculated as the *difference between baseline emissions and emissions after project implementation*, considering any potential leakage.

0

$$ER_{y} = BE_{y} - PE_{y} - LE_{y}$$

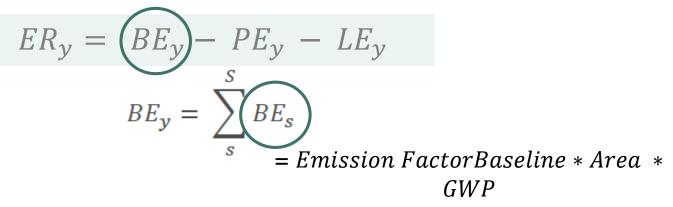
Where:

 $ER_y = Emissions reductions in year y (tCO_2)$

- BE_y = Baseline emissions in year y (tCO₂)
- PE_v = Project emissions in year y (tCO₂)
- LE_y = Leakage emissions in year y (tCO₂)

Baseline emissions are calculated based on the area of project fields that would have been under continuously flooded rice cultivation

$$ER_{y} = BE_{y} - PE_{y} - LE_{y}$$
$$BE_{y} = \sum_{s}^{s} BE_{s}$$


Where:

 BE_{y} = Baseline emissions in year y (tCO₂e)

 BE_s^{y} = Baseline emissions from project fields in season s (tCO₂e)

Baseline *emissions* are calculated based on the *area* of project fields that would have been under continuously flooded rice cultivation

Where:

 $\overline{BE_v}$ = Baseline emissions in year y (tCO₂e)

 BE_s = Baseline emissions from project fields in season s (tCO₂e)

Baseline emissions are calculated based on the area of project fields that would have been under continuously flooded rice cultivation

$$ER_{y} = BE_{y} - PE_{y} - LE_{y}$$
$$BE_{y} = \sum_{s}^{S} BE_{s}$$
$$BE_{s} = \sum_{g=1}^{G} EF_{BL,s,g} \times A_{s,g} \times 10^{-3} \times GWP_{CH4}$$

Where:

 BE_{y} = Baseline emissions in year y (tCO₂e)

 BE_s = Baseline emissions from project fields in season s (tCO₂e)

 $EF_{BL,s,g}$ = Baseline emission factor of group g in season s (kgCH₄/ha per season)

 $A_{s,g}$ = Area of project fields of group g in season s (ha)

 GWP_{CH4} = Global warming potential of CH4 (tCO₂e/t CH4) g = Group g, covers all project fields with the same cultivation pattern s = Single season / S = Seasons in a year considered in the project activity

Table 7: Specific emission factors for baseline, project and emission reductions

	EF _{BLc}					Project scenarios	Project				Emission reduction factor (EF _{ER}) (kgCH4/ha/day) or (kgCH4/ha/season)
		SF _{BL,w}	SF _{BL.p}	SF _{BL,0}	Emission factor (EF _{BL})		SF _{P,w}	SF _{P,p}	SF _{P,o}	Emission factor (EF _P)	
For regions/ countries where double	EFBLC	1.00	1.00	2.88	EF _{BL,c} ×	Scenario 1: change the water regime from continuously to intermittent flooded conditions (single drainage)	0.71	1.00	2.88	EF _{BL,c} × 2.04	$EF_{BL,c} \times 0.84$
cropping is practiced	LFBL,c	1.00	2,00	2.88	Scenario 2: change the water regime from continuously to intermittent flooded conditions (multiple drainage)	0.55	1.00	2.88	EF _{BL,c} × 1.58	$EF_{BL,c} \times 1.30$	
For regions/ countries where single	EFBLC	1.00	0.89	1.48	EF _{BLe} ×	Scenario 1: change the water regime from continuously to intermittent flooded conditions (single drainage)	0.71	0.89	1.48	EF _{BL,c} × 0.94	$EF_{BL,c} \times 0.38$
cropping is practiced	- BLe	1.00	0.00		1.32	Scenario 2: change the water regime from continuously to intermittent flooded conditions (multiple drainage)	0.55	0.89	1.48	EF _{BL,c} × 0.72	$EF_{BL,c} \times 0.60$

Table 9: Global, regional and country specific default emission factors

Region	Emission factor (EF, _{BL,C}) (kg CH4/ha/d)
Global	1.19
Regional values	
Africa	1.19
East Asia	1.32
Southeast Asia	1.22
South Asia	0.85
Europe	1.56
North America	0.65
South America	1.27
Country specific	
Bangladesh	0.97
Brazil	1.62
China	1.3
India	0.85
Indonesia	1.18
Italy	1.66
Japan	1.06
Philippines	0.6
South Korea	1.83
Spain	1.13
Uruguay	0.8
USA	0.65
Vietnam	1.13

Source: GoldStandard Methodology

Key parameters required to estimate emission reductions of example

Parameter	Unit	Value	Source
Cultivation period of rice	days/year	140	Project documentation
Baseline scaling factor for water regime during cultivation period (continuously flooded) $SF_{BL,w}$	-	1.00	IPCC 2019, Volume 4, chapter 5.5, Table 5.12
Baseline scaling factor for water regime prior to rice cultivation (single cropping / Non flooded preseason > 180 days) $SF_{BL,P}$	-	0.89	IPCC 2019, Volume 4, chapter 5.5, Table 5.13
Baseline scaling factor related to organic amendment $SF_{BL,o}$	-	1.48	IPCC 2019, Volume 4, chapter 5.5, Table 5.14
Default Emission factor - Global EF, BL, C	kgCH ₄ /ha/day	1.19	Gold Standard Methodology

Baseline emissions are calculated based on the area of project fields that would have been under continuously flooded rice cultivation

$$ER_{y} = BE_{y} - PE_{y} - LE_{y}$$
$$BE_{y} = \sum_{s}^{S} BE_{s}$$
$$BE_{s} = \sum_{g=1}^{G} EF_{BL,s,g} \times A_{s,g} \times 10^{-3} \times GWP_{CH4}$$

Where:

 BE_y = Baseline emissions in year y (tCO₂e)

 BE_s = Baseline emissions from project fields in season s (tCO₂e)

 $EF_{BL,s,g}$ = Baseline emission factor of group g in season s (kgCH₄/ha per season)

 $A_{s,g}$ = Area of project fields of group g in season s (ha)

 GWP_{CH4} = Global warming potential of CH4 (tCO₂e/t CH4) g = Group g, covers all project fields with the same cultivation pattern s = Single season / S = Seasons in a year considered in the project activity

 $EF_{BL} = EF_{BL,c} \times SF_{BL,w} \times SF_{BL,p} \times SF_{BL,o} = 1,57 \frac{Kg_{CH4}}{ha * d}$

Baseline emissions are calculated based on the area of project fields that would have been under continuously flooded rice cultivation

$$ER_{y} = BE_{y} - PE_{y} - LE_{y}$$

$$BE_{y} = \sum_{s}^{S} BE_{s}$$

$$BE_{s} = \sum_{g=1}^{G} EF_{BL,s,g} \times A_{s,g} \times 10^{-3} \times GWP_{CH4}$$

$$= 1,57 \frac{kg_{CH4}}{ha * d} * 140d * 0,01ha * 28 GWPCH_{4} = 614tCO_{2e}$$

Where:

 BE_y = Baseline emissions in year y (tCO₂e)

 BE_s = Baseline emissions from project fields in season s (tCO₂e)

 $EF_{BL,s,g}$ = Baseline emission factor of group g in season s (kgCH₄/ha per season)

 $A_{s,g}$ = Area of project fields of group g in season s (ha)

 GWP_{CH4} = Global warming potential of CH4 (tCO₂e/t CH4) g = Group g, covers all project fields with the same cultivation pattern s = Single season / S = Seasons in a year considered in the project activity

Calculation of emission reductions

General approach for mitigation activites considering baseline and project emissions

0

$$ER_y = BE_y - PE_y - LE_y$$

Where:

 ER_y = Emissions reductions in year y (tCO₂)

- BE_y = Baseline emissions in year y (tCO₂)
- $PE_y = Project$ emissions in year y (tCO₂)
- LE_y = Leakage emissions in year y (tCO₂)

Calculation of project emissions of rice irrigation management

In the case of rice irrigation management, there are three types of project emission (CH₄, CO₂ and N₂O).

 $ER_{y} = BE_{y} - (PE_{y}) - LE_{y}$ $PE_{y} = \underbrace{PE_{y}}_{s} + \underbrace{PE_{y}}_{s} = Emission \ Factor Project \ * \ Area \ * \ GWP$

<u>Where:</u> <u> $PE_y = Project emissions (CH4) in year y (tCO2e)</u>$ <u> $PE_s = Project emissions (CH4) from project fields in season s (tCO2e)</u>$ </u></u>

Example: Calculation of baseline/project CH₄ emissions

Table 7: Specific emission factors for baseline, project and emission reductions

	EF _{BLe}					Project scenarios	Project				Emission reduction factor (EF _{ER}) (kgCH4/ha/day) or (kgCH4/ha/season)
		SF _{BL,w}	SF _{BL,p}	SF _{BL,0}	Emission factor (EF _{BL})		SF _{P,w}	SF _{P,p}	SF _{P,o}	Emission factor (EF _P)	
For regions/ countries where double	FF	1.00	1.00	2.88	EF _{BL,c} ×	Scenario 1: change the water regime from continuously to intermittent flooded conditions (single drainage)	0.71	1.00	2.88	EF _{BL,c} × 2.04	$EF_{BL,c} \times 0.84$
cropping is practiced	EFBL,c	1.00	1.00	2,88	2.88	Scenario 2: change the water regime from continuously to intermittent flooded conditions (multiple drainage)	0.55	1.00	2.88	EF _{BL,c} × 1.58	$EF_{BL,c} \times 1.30$
For regions/ countries	FF	1.00	0.89	1.48	EF _{BLc} ×	Scenario 1: change the water regime from continuously to intermittent flooded conditions (single drainage)		0.89	1.48	EF _{BL,c} × 0.94	$EF_{BL,c} \times 0.38$
where single cropping is practiced	EFBL,c	1.00	0.05	1.40	1.32	Scenario 2: change the water regime from continuously to intermittent flooded conditions (multiple drainage)	0.55	0.89	1.48	EF _{BL,c} × 0.72	$EF_{BL,c} \times 0.60$

Table 9: Global, regional and country specific default emission factors

Region	Emission factor (EF, _{BL,C}) (kg CH4/ha/d)
Global	1.19
Regional values	
Africa	1.19
East Asia	1.32
Southeast Asia	1.22
South Asia	0.85
Europe	1.56
North America	0.65
South America	1.27
Country specific	
Bangladesh	0.97
Brazil	1.62
China	1.3
India	0.85
Indonesia	1.18
Italy	1.66
Japan	1.06
Philippines	0.6
South Korea	1.83
Spain	1.13
Uruguay	0.8
USA	0.65
Vietnam	1.13

Source: GoldStandard Methodology

Calculation of project emissions of rice irrigation management

In the case of rice irrigation management, there are three types of project emission (CH₄, CO₂ and N₂O).

 $ER_{y} = BE_{y} - (PE_{y}) - LE_{y}$ $PE_{y} = \sum_{s}^{n} PE_{s} + (PE_{N} + PE_{p})$ Emissions resulting from

project implementation

Where:
 $\underline{PE_y} = \text{Project emissions (CH4) in year y (tCO2e)}$
 $\underline{PE_s} = \text{Project emissions (CH4) from project fields in season s (tCO2e)}$ $\underline{PE_N} = \text{Project emissions (N2O) from N-inputs in the project}$
fields (tCO2e)
 $\underline{PE_p} = \text{Project emissions (CO2) from fields preparations (tCO2e)}$ Image: Nternational cumate

Calculation of project emissions of rice irrigation management

In the case of rice irrigation management, there are three types of project emission (CH₄, CO₂ and N₂O). $ER_y = BE_y - (PE_y) - LE_y$

 $PE_y = \sum PE_s + PE_N + PE_p$

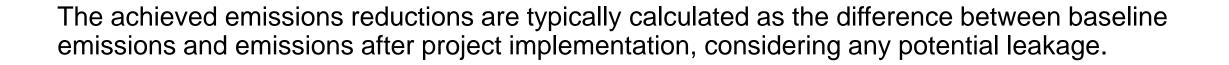
In our example, although there is no increase of nitrogen (N)-inputs between baseline and project scenario, the fact of shifting from continuously flooded conditions to intermittent flooding could result in higher N2O emissions Emissions from land preparation should also be considered, if significant. In our example, there is no land preparation work, therefore there are no CO₂ project emissions.

<u>Where:</u> $\underline{PE_y} = \text{Project emissions (CH4) in year y (tCO2e)}$ $\underline{PE_s} = \text{Project emissions (CH4) from project fields in season s (tCO2e)}$ $\underline{PE_p} = \text{Project emissions (N2O) from N-inputs in the project}$ $\underline{PE_p} = \text{Project emissions (CO2) from fields preparations (tCO2e)}$

Calculation of project emissions of rice irrigation management

In the case of rice irrigation management, there are three types of project emission (CH₄, CO₂ and N₂O).

$$ER_{y} = BE_{y} - (PE_{y}) - LE_{y}$$


$$PE_{y} = \sum_{s}^{n} PE_{s} + PE_{N} + PE_{p}$$

$$= 531tCO_{2e} + 1tCO_{2e} + 0tCO_{2e} = 532tCO_{2e}$$

Where:
 $\underline{PE_y} = \text{Project emissions (CH4) in year y (tCO2e)}$
 $\underline{PE_s} = \text{Project emissions (CH4) from project fields in season s (tCO2e)}$ $\underline{PE_N} = \text{Project emissions (N2O) from N-inputs in the project fields (tCO2e)}$
 $\underline{PE_p} = \text{Project emissions (CO2) from fields preparations (tCO2e)}$ International

Calculation of emission reductions

General approach for mitigation activites considering baseline and project emissions

0

$$ER_y = BE_y - PE_y - LE_y$$

Where:

- ER_y = Emissions reductions in year y (tCO₂)
- BE_y = Baseline emissions in year y (tCO₂)
- $PE_y = Project$ emissions in year y (tCO₂)
- LE_y = Leakage emissions in year y (tCO₂)

Leakage emissions of rice irrigation management

In the case of rice irrigation management, leakage emissions are deemed to be negligible.

However, the *methodology also recommends to apply an uncertainty deduction factor* of 15% on emission reductions when default values are used for calculation (which is the case here). Thus, here we calculate and reflect the uncertainty-related *decrease of emission reductions* in the leakage section (based on baseline and project emissions).

$$ER_y = BE_y - PE_y - (LE_y)$$

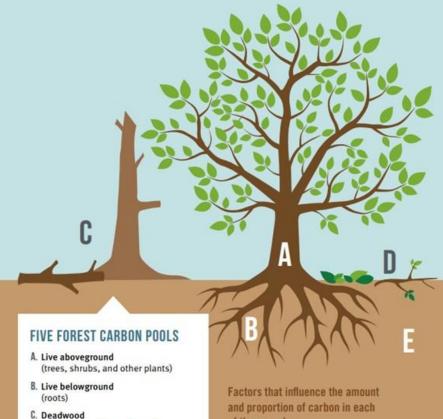
 $LE_y = (BE_y - PE_y) * 15\%$

Where:

- $ER_v = Emissions reductions in year y (tCO_2)$
- BE_y = Baseline emissions in year y (tCO₂)
- $PE_v = Project emissions in year y (tCO_2)$
- LE_y = Leakage emissions in year y (tCO₂)

Example in the Excel Tool

IK


View into the IKI Standard Indicator Report (Excel tool)

Archivo	Inicio Insertar Dib	ujo L	Diseño de	e pagina – r	Fórmulas	Datos	Revisar Vis	ta Ayı	Jaa			Col لــرا	mentarios	• v• Por	erse al día	D
9 C' P	Pegar N K S D ab	10 ×	A^ A` ~ <u>A</u> ~		E Combi	ar texto inar v centrar	General	~ 00, 00, 00, 00	Format		mato como E	Estilos de	Insertar Elim		A BO	tosuma v rrar v
eshacer P	Portapapeles Fuent			<u>≡</u>	Alineación		, , , , , , , , , , , , , , , , , , ,		condicion	al∨ ta Esti		celda 🗸	• •	, v Idas		
188	\sim \times f_x				Amedelon		, indire	0.0		250						
A	B C D	E	F	G	Н	I.	J K	L	М	N	0	Р	Q	R	S	т
1 2 3 4	Zukunft Umwelt Gesellschaft										IK	CLI	TERNATIONAL IMATE TIATIVE			
5	S 1 - Mitigation: GHG emissions redu	ced or carb	on stocks e	enhanced directly	y or indirectly by	IKI project m	leasures.									
5	<u>< SI1 1ER</u>	t: Direct mitiga	ation (Emissio	on reductions)		2				Go to:	Basic Data	Manual	Overview			
7 3																
) 2 3 4 5 5 6 7 8	Does our project need to provide info Prease use the table below to quantity in - The cells in the section "Planned target - The cells in the section "Reporting" can Practical tips: - Please link values of inputs parameters	e project em estimate" ca be used for	an be used ir annual repo	our proposed techni n the beginning of y orting purposes. To t	your project to qu this end, please	uantify your pro annually updat	te the project scenario,	if needed.		-	erences.					
9 0 52 53 55 56 77 77 78 88 89 99 90 90 91 92 22 23 24 55 56	Hease use the table below to quantity in The cells in the section "Planned target The cells in the section "Reporting" can Practical tips:	e project em estimate" ca be used for used in the the calculation to other row when neede ng additional ions"	an be used ir annual repo table to shee on table the e on table the e swhile expla ed. ones above	our proposed techning n the beginning of y orting purposes. To 1 et "SI 1 - Mitigation description of what aining the calculation the Row Reference	your project to qu o this end, please on" (section "Parau at is calculated in t ion (e.g., Row A x ce Z.	uantify your pro annually updat meters and ass the row, the cal	oject scenario. te the project scenario, sumptions applied in th ilculation approach or s scribing your calculatio	if needed. e estimations ource used ar ns / sources, p	") as applicable Id the unit of th Ilease make su	using cell refe e values prese re that the forr	ented. nulas used are					
9 0 52 55 55 56 66 57 78 88 99 90 90 90 90 91 11 92 22 23 33 34 44 45 55 56 66 77	The cells in the section "Planned target The cells in the section "Reporting" can Practical tips: Please link values of inputs parameters It is important to identify in each row of With the row reference, users can refer Use cell references to input parameters You can add more rows through insertif Planned target estimate - "Project emissi Please use the table below to quantify th	e project em estimate" ca be used for used in the the calculation to other row when neede ng additional ions" e project em Row	an be used in annual repo table to shee on table the e swhile expla- ed. ones above	ar proposed techning of y riting purposes. To 1 description of what aining the calculatio the Row Reference e planned target es	your project to qu this end, please on" (section "Paran at is calculated in ion (e.g., Row A x ce Z.	uantify your pro annually updat meters and ass the row, the cal x B). When des	oject scenario. te the project scenario, sumptions applied in th idulation approach or s scribing your calculation	if needed. e estimations' ource used ar ns / sources, p 2021	") as applicable Ind the unit of th Ilease make su 2022	using cell refe e values prese re that the forr 2023	ented. nulas used are 2024	2025	Vear 7	Year 8	Year 9	Year
9 0 52 53 55 56 77 77 78 88 89 99 90 90 91 92 22 23 24 55 56	The cells in the section "Planned target The cells in the section "Reporting" can Practical tips: Please link values of inputs parameters It is important to identify in each row of With the row reference, users can refer Use cell references to input parameters You can add more rows through insertir Planned target estimate - "Project emissi Please use the table below to quantify th Item / Description Area of project fields with continuously	e project em estimate" ca be used for used in the the calculation to other row when needen additional ions"	an be used in annual repo table to shee on table the e swhile expla- ed. ones above	ar proposed technin n the beginning of y nting purposes. To 1 et "SI 1 - Mitigation description of what aining the calculation the Row Reference e planned target es Calculation / Source	your project to qu this end, please on" (section "Paran at is calculated in ion (e.g., Row A x ce Z.	uantify your pro annually updat meters and ass the row, the cal	oject scenario. te the project scenario, sumptions applied in th ilculation approach or s scribing your calculatio	if needed. e estimations ource used ar ns / sources, p	") as applicable Id the unit of th Ilease make su	using cell refe e values prese re that the forr	ented. nulas used are		Year 7 0,00	Year 8 0,00	Year 9 0,00	
9 0 52 53 54 55 55 55 56 67 77 77 77 77 77 78 88 99 90 90 90 90 90 90 90 90 90	The cells in the section "Planned target The cells in the section "Reporting" can Practical tips: Please link values of inputs parameters It is important to identify in each row of With the row reference, users can refer Use cell references to input parameters You can add more rows through insertif Plaase use the table below to quantify th Item / Description	e project em estimate" ca be used for used in the the calculation to other row when needeng additional ions" e project em Row reference	an be used in annual report table to shee on table the ers while expla- ed. ones above	an proposed technin n the beginning of y riting purposes. To 1 description of what aining the calculatio the Row Reference the Row Reference calculation / Source umentation	your project to qu this end, please on" (section "Paran at is calculated in ion (e.g., Row A x ce Z.	uantify your pro annually updat meters and ass the row, the cal x B). When des	oject scenario. te the project scenario, sumptions applied in th ilculation approach or s scribing your calculation 2020 Year 1	if needed. e estimations' ource used ar rs / sources, p 2021 Year 2	") as applicable nd the unit of th lease make su 2022 Year 3	using cell refe e values prese re that the forr 2023 Year 4	ented. nulas used are 2024 Year 5	2025 Year 6				Year 0,0
9 0 122 125 125 125 125 125 125 126 129 129 129 129 129 129 129 129	The cells in the section "Planned target The cells in the section "Reporting" can Practical tips: Please link values of inputs parameters It is important to identify in each row of With the row reference, users can refer Use cell references to input parameters You can add more rows through insertif Planned target estimate - "Project emissi Please use the table below to quantify th Item / Description Area of project fields with continuously flooded irrigation conditions Area of project fields with multiple drainage period	e project em estimate" cc be used for used in the the calculatit to other row when neede g additional ions" e project em Row reference A	Institute of your and be used in annual report table to sheet on table the splate the explated ones above ission for the Project docu	an proposed technin n the beginning of y riting purposes. To 1 description of what aining the calculatio the Row Reference the Row Reference calculation / Source umentation	your project to qu this end, please on" (section "Paran ti is calculated in t is calculated in t ison (e.g., Row A x ce Z.	unit, as tonows: uantify your pro annually updat meters and ass the row, the cal x B). When des Unit ha	oject scenario. te the project scenario, sumptions applied in th ilculation approach or s scribing your calculation <u>2020</u> Year 1 70,00	if needed. e estimations' ource used ar s / sources, p 2021 Year 2 40,00	⁽⁾) as applicable Ind the unit of th lease make su 2022 Year 3 0,00	using cell refe e values presere re that the forr 2023 Year 4 0,00	ented. nulas used are 2024 Year 5 0,00	2025 Year 6 0,00	0,00	0,00	0,00	0,0
9 0 122 123 124 133 144 155 155 155 157 177 177 177 188 188 199 199 190 191 192 192 193 194 194 194 194 194 194 194 194	The cells in the section "Planned target The cells in the section "Reporting" can Practical tips: Please link values of inputs parameters It is important to identify in each row of With the row reference, users can refer Use cell references to input parameters You can add more rows through insertir Planned target estimate - "Project emissi Please use the table below to quantify th Item / Description Area of project fields with continuously flooded irrigation conditions Area of project fields with multiple drainage period Project emissions - XO- from Ainputs	e project em estimate" cc be used for used in the the calculatic to other row when needen a additional ons* e project em Row reference A B	Institute of your of y	an proposed technin n the beginning of y riting purposes. To 1 description of what aining the calculatio the Row Reference the Row Reference calculation / Source umentation	your project to qu this end, please on" (section "Paral at is calculated in t ion (e.g., Row A x ce Z. stimate.	unit, as tonows: uantify your pro annually updat meters and ass the row, the cal x B). When des	oject scenario. te the project scenario, sumptions applied in th ilculation approach or s scribing your calculation Year 1 70.00 30.00	If needed. e estimations' ource used ar ns / sources, p 2021 Year 2 40,00 60,00	¹) as applicable d the unit of th lease make su 2022 Year 3 0,00 100,00	using cell refe e values prese re that the forr 2023 Year 4 0,00 100,00	ented. nulas used are 2024 Year 5 0,00 100,00	2025 Year 6 0,00 100,00	0,00	0,00	0,00	0,0
9 0 122 125 125 125 125 125 125 126 129 129 129 129 129 129 129 129	The cells in the section "Planned target The cells in the section "Planned target The cells in the section "Reporting" can Tractical tips: Please link values of inputs parameters It is important to identify in each row of With the row reference, users can refer Use cell references to input parameters You can add more rows through insertin Please use the table below to quantify the Item / Description Area of project fields with continuously flooded irrigation conditions Area of project fields with continuously flooded irrigation conditions Area of project fields with continuously flooded irrigation conditions Area of project fields with continuously flooded irrigation conditions Area of project fields with continuously flooded irrigation conditions Area of project fields with multiple drainage period Project missions - CH4 - from anaerobic decomposition of organic mater	e project emit estimate" ce be used for used in the the calculatit to other row when needde ng additional one" e project emit Row reference A B D	an be used in annual repo table to sheet on table the sheet on table the expla- so while expla- d. ones above project docu Project docu Calculated	an proposed technin n the beginning of y riting purposes. To 1 description of what aining the calculation the Row Reference the Row Reference calculation / Source umentation	your project to qu this end, please on" (section "Paral at is calculated in t ion (e.g., Row A x ce Z. stimate.	unit, as follows: uantify your pro annually updat meters and ass the row, the cal x B). When des Unit ha ha kgCH4	oject scenario. te the project scenario, sumptions applied in th liculation approach or s scribing your calculation 2020 Year 1 70,00 30,00 18.982,04	If needed. e estimations' ource used ar 1s / sources, p 2021 Year 2 40,00 60,00 16,019,52	 ') as applicable d the unit of th lease make su 2022 Year 3 0,00 100,00 12,059,50 	using cell refe e values prese re that the forr 2023 Year 4 0,00 100,00 12,069,50	ented. nulas used are 2024 Year 5 0,00 100,00 12.069,50	2025 Year 6 0,00 100,00 12.069,50	0,00 100,00 12.069,50	0,00 100,00 12.069,50	0,00 100,00 12.069,50	0,0

Forest carbon pools

INTERNATIONAL CLIMATE INITIATIVE

IKI

- (standing dead trees [snags] and downed logs)
- D. Litter
 - (leaves, needles, and small branches)
- E. Soil organic matter
 - (organic material in the soil, such as dead and decayed biomass [e.g., plant material and insects])
- of these pools:
- the age of the forest
- the species of trees making up the forest
- natural and human disturbances
 - soil characteristics (e.g., texture and drainage)
 - · past agricultural land-use history

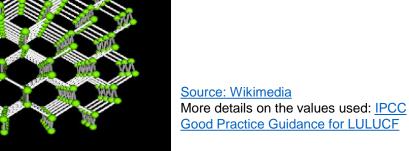
Source: Connecticut - Department of Energy & Environmental Protection

More details about the definitions: IPCC Good Practice Guidance for LULUCF

From wood to CO₂

Wood volume (m³/ha)

x specific density of wood



Biomass (t/ha)

x 0.47 (IPPC default)

Example: Forestry

Project: Afforestation project

- Target group: Farmers and rural communities
 managing degraded land
- **Objective:** Improvement of carbon stock
- **Project intervention:** afforestation of 342 ha with fast growing trees

Methodology used:

<u>AR-ACM0003 - Afforestation and reforestation of lands</u> <u>except wetlands</u>

Source: Project: Fazenda Nascente do Luar

Example - Project boundary

The project boundary

- Refers to the defined scope or geographical area within which emissions and emission reductions are accounted for
- Sets the limits for what emissions/removals are included in the assessment

For typical AFOLU related projects

• The project boundary refers to the limits or borders of the designated project area. This area could encompass various types of land, such as a farm, or a specific region within a larger area, such as a municipality.

Source: Project: Fazenda Nascente do Luar

Example – Baseline and project scenario

Baseline scenario

The land within the Project Area boundary before the start of the Project was degraded grassland, occupied by extensive cattle farming, as occurs in the same department and municipality. Such grasslands have historically been subject to burning activities that took place with the objective to reduce tree cover and expand grasslands in order to develop extensive cattle ranching activities.

Project scenario

Afforestation of 342 ha of degraded grassland with fast-growing tree species (Eucalyptus uro-grandis)

Project timeline: 30 years

Source: Project: Fazenda Nascente do Lua

Calculation of Net GHG removals

According to the A/R Large-scale Consolidated Methodology, Afforestation and Reforestation of lands except wetlands **Net Anthropogenic GHG removals** by sinks is calculated as follows:

$$C_{AR-CDM} = \Delta C_{ACTUAL} - \Delta C_{BSL} - LK$$

Where:

 $\mathsf{C}_{\mathsf{AR-CDM}}$

 ΔC_{BSL}

LK

 ΔC_{ACTUAL}

- = Net Anthropogenic GHG removals by sinks, in year t, (tCO₂e)
 - = Actual net GHG removals by sinks, in year t, (tCO₂e)
 - = Baseline net GHG removals by sinks, in year t, (tCO_2e)
 - = Leakage GHG emissions, in year t, (tCO_2e)

Calculation of baseline emissions

According to the A/R Large-scale Consolidated Methodology, Afforestation and Reforestation of lands except wetlands the **baseline estimation** is given as follows

 $C_{AR-CDM} = \Delta C_{ACTUAL} - \Delta C_{BSL} - LK$ $\Delta C_{BSL,t} = \Delta C_{TREE_BSL,t} + \Delta C_{SHRUB_BSL,t} + \Delta C_{DW_BSL,t} + \Delta C_{LI_BSL,t}$

Where:

 $\begin{array}{l} \Delta C_{BSL} \\ \Delta C_{TREE_BSL,t} \\ \Delta C_{SHRUB_BSL,t} \\ \Delta C_{DW BSL,t} \end{array}$

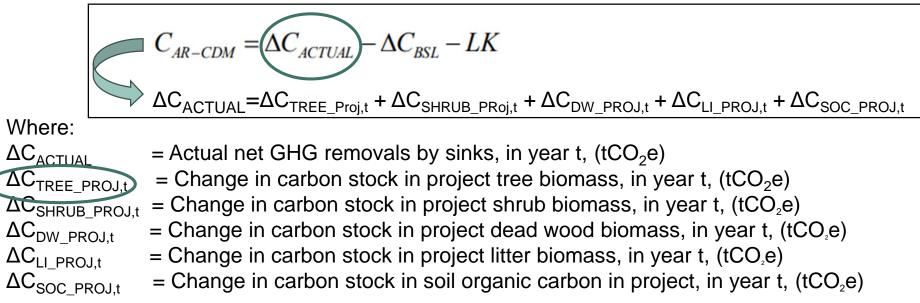
= Baseline net GHG removals by sinks, in year t, (tCO_2e)

= Change in carbon stock in baseline tree biomass within the project boundary in year t, (tCO₂e)

 $_{SL,t}$ = Change in carbon stock in baseline shrub biomass within the project boundary, in year t, (tCO₂e)

= Change in carbon stock in baseline dead wood biomass within the project boundary, in year t, (tCO_2e)

 $\Delta C_{LI_{BSL,t}}$ = Change in carbon stock in baseline litter biomass within the project boundary, in year t, (tCO₂e)


In this case, the baseline is assumed to be zero since the project starts from degraded land with no tree or shrub cover.

Leakage is also zero since there is no displacement of activities expected

Calculation of the actual project emissions or removals

According to the A/R Large-scale Consolidated Methodology, Afforestation and Reforestation of lands except wetlands the **net GHG removals** is defined as follows

Calculation of the C_{Tree} sub-element

Each sub-element in the equation mentioned in the slide before $(\Delta C_{\text{TREE}_PROJ,t}, \Delta C_{\text{SHRUB}_PROJ,t}, \Delta C_{\text{DW}_PROJ,t}, \Delta C_{\text{LI}_PROJ,t}, \Delta C_{\text{SOC}_PROJ,t})$ in turn is calculated based on several equations.

	Source	Annotations	Increment wood vol (m³/ha/year)	Wood density	Biomass Exp Fact	Incr. biomass ABOVE (ton/ha/year)	Root-shoot ratio	Incr. Biomass ABOVE+BELOW (ton/ha/year)
			I,	D	BEF,	$\mathbf{G}_{\mathbf{w}} = \mathbf{I}_{\mathbf{v}} \bullet \mathbf{D} \bullet \mathbf{B} \mathbf{E} \mathbf{F},$	R	$\mathbf{G}_{\text{TOTAL}} = \mathbf{G}_{\text{w}} \bullet (1 + \mathbf{R})$
$C_{TREE} = \frac{44}{12} \times CF_{TREE} \times B_{TREE}$	IPCC - TABLE 3A.7	E. urophylla	40.00	0.51	1.50	30.60	0.35	41.31
	IPCC - TABLE 3A.7	E. grandis	32.50	0.51	1.50	24.86	0.35	33.56
$B_{TREE} = A \times b_{TREE}$		etween <i>E. urophylla</i> grandis	36.25	0.51	1.50	27.73	0.35	37.44

Source: <u>AR-TOOL14</u>

Source: Project: Fazenda Nascente do Luar

Values source: IPCC Good Practice Guidance for LULUCF

 $C_{\text{TREE PROJ}} = Biomass (b_{\text{TREE}})$ * Carbon Factor (CF_{TREE}) * CO2 Factor * Area (A) C_{TREE PROJ} = 37.44 (t/ha/year) * 0.47 * (44/12) * 342.7773 (ha) C_{TREE PROJ}= 22, 116 tCO2e/year

ΔC_{ACTUAL} Values for the project

	Estimated baseline emissions or removals (tCO ₂ e)	∆CTREE,t	∆CSOC,t	∆CDW,t	∆CLI,t	Net Anthropogenic GHG removals by sinks (tCO ₂ e)	Estimated leakage emissions (tCO ₂ e)	Net Anthropogenic GHG removals by sinks (tCO2e)
Year	$\Delta C_{BSL,t}$	tCO2e	tCO2e	tCO2e	tCO2e	$\Delta C_{ACTUAL,t}$ = $\Delta CTREE,t +$ $\Delta CSOC,t+$ $\Delta CDW,t+$ $\Delta CLI,t$	LK _t	$\Delta C_{AR-CDM,t}$
1	0.00	22,114.88	735.26	221.15	221.15	23,292.43	0.00	23,292.43
2	0.00	22,114.88	735.26	221.15	221.15	23,292.43	0.00	23,292.43
3	0.00	22,114.88	735.26	221.15	221.15	23,292.43	0.00	23,292.43
4	0.00	22,114.88	735.26	221.15	221.15	23,292.43	0.00	23,292.43
5	0.00	22,114.88	735.26	221.15	221.15	23,292.43	0.00	23,292.43
6	0.00	22,114.88	735.26	221.15	221.15	23,292.43	0.00	23,292.43

Total: 691,420.43

Example in the Excel Tool

View into the IKI Standard Indicator Report (Excel tool)

A	B C D E F G H I J K L M N O P Q R S T U V W X Y Z AA
1 2 3 4	Zuskunft Umwelt Gesellschaft
5	S 1 - Mitigation: GHG emissions reduced or carbon stocks enhanced directly or indirectly by IKI project measures.
6 7	SI 1 1 ER: Direct mitigation (Emission reductions) 2 Go to: Basic Data Manual Overview
8	
9	Does our project need to provide information in this sheet? Yes: Since the project aims at mitigating GHG directly through financial investments, please fill out this sheet.
113	Please use the table below for the estimation as follows:
114	
115	- The cells in the section "Planned target estimate" can be used in the beginning of your project to quantify your baseline scenario.
16	- The cells in the section "Reporting" can be used for annual reporting purposes. To this end, please annually update the baseline scenario, if needed. If no changes are necessary,
17	you can simply enter the values from your planned target estimate for each year.
118	
19 20	(j) <u>Practical tips:</u>
20	- Please link values of inputs parameters used in the table to sheet "\$11 - Mitigation" (section "Parameters and assumptions applied in the estimations") as applicable using cell references.
22	- It is important to identify in each row of the calculation table the description of what is calculated in the row, the calculation approach or source used and the unit of the values presented With the row reference, users can refer to other rows while explaining the calculation (a, row A x B). When describing your calculation (a, concer, please make sure that the formulas used are transparent.
22	- vmi me tov references to sets can refer to outer rows while explaining the calculation (e.g., row A x b), when deschoing your calculations / sources, please make sure that the orimitals used are transparent.
24	- You can add more rows through inserting additional ones above the Row Reference Z.
25	
26	
27	
25 26 27 28	Planned target estimate - "Baseline emissions"
29	
30	Please use the table below to qutantify the baseline emission for the planned target estimate.
31	2020 2021 2022 2023 2024 2025 Image: Constraint of the second seco

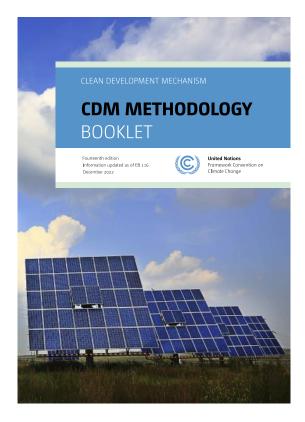
					2020	2021	2022	2023	2024	2025									Values until**	
Item / Description	Row reference	Calculation / Source	Unit	[Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9	Year 10	Year 11	Year 12		2030	2040	2050
lumber of solar energy-based water reatment systems	A	Email correspondence with project team	Number		2	5	10	15	20	25	25	25	25	25	25	25		25	25	0,00
Average solar system size	В	Project documents	kWp		14	14	14	14	14	14	14	14	14	14	14	14		14	14	0,00
Total installed capacity - solar PV systems	С	Calculated	kWp		28	70	140	210	280	350	350	350	350	350	350	350		350	350	0,00
Capacity factor - solar PV	D	CDM-SSC WG Thirty-third meeting Report Ar	%		16	16	16	16	16	16	16	16	16	16	16	16		16	16	0,00
Total annual electricity generation from solar PV	E	Calculated	kWh/year		39.245	98.112	196.224	294.336	392.448	490.560	490.560	490.560	490.560	490.560	490.560	490.560		490.560	490.560	0,00
Share of water treatment systems connected to the electricity grid (import)	F	Assumed, based on expert judgement	%		60	60	60	60	60	60	60	60	60	60	60	60		60	60	0,00
Combined Margin Grid emission factor GEF), intermittent energy generation	G	Harmonized IFI Default Grid Factors 2021 v3.	tCO2e/MWh		0,46	0,46	0,46	0,46	0,46	0,46	0,46	0,46	0,46	0,46	0,46	0,46		0,46	0,46	0,00
Baseline emissions - electricity consumption from national power grids	н	Calculated	tCO ₂ e/year		11	27	54	82	109	136	136	136	136	136	136	136		136	136	0,00
Share of water treatment systems powered by diesel generators (captive generation)	1	Assumed, based on expert judgement	%		40	40	40	40	40	40	40	40	40	40	40	40		40	40	0,00
Emission factors for diesel generator systems (<15 kW) - productive applications/ water pumps	J	CDM TOOL33 Methodological tool: Default va	kgCO2e/kWh		0,90	0,90	0,90	0,90	0,90	0,90	0,90	0,90	0,90	0,90	0,90	0,90		0,90	0,90	0,00
Baseline emissions - diesel gensets	К	Calculated	tCO2e/year		14	35	71	106	141	177	177	177	177	177	177	177		177	177	0,00
Baseline emissions (BE) per annum tCO2e			tCO ₂ e	1	25	63	125	188	250	313	313	313	313	313	313	313				
		Baseline emissions cumulative (BE) tCO2e				88	213	400	651	963	1.276	1.589	1.902	2.215	2.528	2.840	[2.528	5.656	0

6 Relevant default values and reference sources

Default values for mitigation estimation of forestry projects

IKI

Parameter	Value and Unit	Source
Forestry		
Annual increment in volume of wood, I	36.25 (m ³ /ha/year)	Source: IPCC – TABLE 3A.7 of ANNEX 3A.1 "Biomass Default Tables for Section 3.2 Forest Land" of IPCC Good Practice Guidance for LULUCF. Mean value between IV values of E. urophylla and E. grandis
Wood density, D	0.51 (tonnes dry matter m ³)	Source: IPCC – TABLE 3A.9-2 of ANNEX 3A.1 "Biomass Default Tables for Section 3.2 Forest Land" of IPCC Good Practice Guidance for LULUCF
Biomass Expansion Factor, BEF	1.50 (dimensionless)	Source: <u>IPCC – TABLE 3A.1.10 of ANNEX 3A.1 "Biomass Default Tables for Section 3.2</u> Forest Land" of IPCC Good Practice Guidance for LULUCF
Root-shoot-ratio, R	0.35	Source: IPCC – TABLE 3A.8 of ANNEX 3A.1 "Biomass Default Tables for Section 3.2 Forest Land" of IPCC Good Practice Guidance for LULUCF
Default Values		
carbon fraction of dry matter for aboveground biomass in forests	0.47	IPCC Good Practice Guidance for LULUCF
carbon conversion rate from C to CO ₂	3.6666 (44/12)	IPCC Good Practice Guidance for LULUCF
other important reference values		Biomass Default Tables and IPCC Good Practice Guidance for LULUCF
Tools		
EX-ACT		Carbon-balance Tool (<u>EX-ACT</u>)
Summary of CDM AR Methodological Tools		Building Forest Carbon Projects - Forest Trends p. 28 and 29


Right choice of an applicable methodological approach and use of default and reference values

General recommendations

To identify suitable methodological approaches and useful default / reference values,

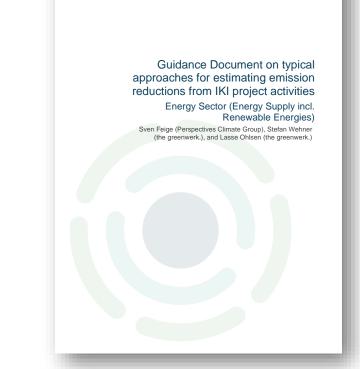
- check other projects that estimated emission reductions from same / similar activities, e.g.,
 - <u>CDM Project Search</u>, <u>VERRA / VCS Project Registry</u>, <u>GoldStandard Registry</u>, NAMA Support Projects (NAMA is now rebranded as Mitigation Action Facility), etc.
 - consult existing methodologies, e.g.: CDM Methodologies in the <u>CDM Methbook</u>, <u>VCS-Methodologies</u>, <u>GS-Methodologies</u> etc.
- consult and use simplified tools for the estimation, if existing, e.g.,
 - Carbon-balance Tool (<u>EX-ACT</u>) is based on the IPCC methodology, covers the entire AFOLU sector and can be used ex-ante or ex-post
 - CBP Carbon Benefits Projects: Carbon-balance Tool (<u>CBP</u>)
- make use of default values and reasonable assumption source from references, e.g.,
 - Allometric equations, wood densities, raw biomass and volume data, biomass expansion factors: <u>http://www.globallometree.org/</u>
 - IPCC Good Practice Guidance for LULUCF <u>Biomass Default Tables</u>

7 Conclusion

Wrap-up

Identify relevant project/ activity types - Develop a clear understanding of the project type and mitigation action covered

- Identify the key characteristics of the projects and the underlying technologies
- Conduct an *impact assessment*, e.g., using a causal chain analysis to identify the envisaged effects and possible co-benefits


Identification and quantification of emission reductions

- Identify the emission sources for emission reduction activities
- Select a suitable methodology or define an applicable estimation approach
- Define *clear baseline and project scenario*

TERNATIONAL

Prepare a *monitoring plan* incl. monitoring and reporting processes

Contact IKI Standard Indicator Helpdesk for questions: <u>iki-si-helpdesk@z-u-g.org</u>

ZUG Zukunft Umwelt Gesellschaft Related Guidance Document will be published shortly

THANK YOU FOR YOUR ATTENTION

Florian Schmitt & Pedro Passaro (Perspectives Climate Group) & the IKI Standard Indicator Helpdesk

02.08.2023

